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Introduction

In the propagation of electromagnetic waves, in a medium with random

R

PP

large-scale (in comparison with the long wave) irregularities due to the
multiple forward scattering effect, fluctuations of the wave field rapidly

P

increaus with distance. Beginning at a certain distince, they are unsuits
able fer caleulation by the perturhation theory in any of its forms (range
of strong fluctuations) ', Thiz effect was observed exporimentally by
Gracheva and Gurvich ﬁﬂ in experiments on the propagation of light in a

Y A

turbulent atmosphere, and in further detailad research in work by Gurvich, i -

kallistratova, Time [3] , Gracheva, Gurvich, Kallistratova 41, and Mordu. ' ﬁi

kovich (5],

Recently, a number of books have appeared in which equations have been
obtainad by different methods, and wilch describe the strong fluctuation region
of a field [6 « 17]. The method for obtaining these equations, used in works
{10 - 17] s 18 based on the approximation of the wave propagation process in

a nonuniform medium by the random diffusion process. In this approximation,

’The range of fluctnations of intensity, which 1s described by the first
approximation of the even perturbations method, is called the weak fliuca
tuations range. The basic results of theoretical and experimental research :
in this range have been shown in some detzil in a book by Tatarskiy [1) (see Iy
also below 3ection 6 of the first chapter),
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closed aquations, suitable for the strong fluctuations range, can be obtained
for all moments of a ficld and equation of the Einstein.Fokker type can be
obtained for the characteristic function of a field,

In this work, we try to show in sequence the basic results obtained in
this direction, The work consists of two chapters,

The firs!i chapter is devoted to a general examination of the propagaticn
process of a light wave in a turbulent medium, The first secticn examines
the stochastic equation, désovibing propagation of a wave in a random medium
and several accurate conclusions of this equation are given, The seocond
section examines a model in which one can disregard the longitudinal radius
of the dielectric constant correlation in comparison with all the longitudinal
scales of the problem, This supposition, equivalent to the substitution of
an actnal correlation function of the refractive index on the delta-function
in a longitudinal direction, allows one to obtain closed integral equations
for all moments of the wave field, Throughout the work, apart from the
supposition above, there is also a supposition on the Gauss distribution of
probabllities for fluctuations of the refractive index. Here, one can reduce
the integral equations to differential ones and show that the characteristic
functional of a fleld is =atisfied by an ejuation of the EinsteineFokker type,
and shows that the propagation of a wave is a diffusion proceas., The fourth
sesctinn shows 3 method of successive approximations for solving the stochastic
equation of a wave propagation, in which the diffusion approximation shown
above 13 the first approximation. Investigation of the second approximation
allows one to obtain boundaries for the applicability of the diffusion approxi-
mation and show that the latter can also be used in the strong fluctuation
range of a field, In the fifth section there 1s an examination of an actual

sxample, devoted to calculating the mutual coherenco function in a turbulent

—— v —— et ot Sl :
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) medium and examining the comparison of results of calculation with experi.

ca o ST G

mental data, The final section of the first chapter investigates the ampli.
tude=phase characteristics of a light wave, ;

S

In a wholes sgeries of works describing wave propagation in a medium with
random irregularities, the equation for ray diffusion is used [18 - 2f} (an
appmii.mation of geometrical opiics). The c¢iffusion equation itsell (the
Einstein.Fokker-EEF) is normally written on the basis of intuitive considera.

tion relying on the analogy with well.known problems, leading to this equation,
The dynamic equation of the problem (in this case .= the equation of rays) is

e o B LT i h o e LB el 1. T SEA L b

only used tor calenlating voefficients in the EEF, As was said in work [_22, 23'),

it is still not clear in what conditions one can justifiably use the EEF (a

number of such conditions was suggested in [23) from physical considerations).

e
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At the same time, there must be certain conditions superimposed on functions
entering the dynamic equations, and certain limitations on parameters, on
which the solution depends, in which the EEF will be the logical result of B

dynamic equations. These conditions are examined in work [24), where it was

ol
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shown Lhat the EEF can only be valid in narrow angle approximation, Sta.
tistical characteristics of amplitude and phase of a light wave, as shown in
work [25] , are determined by the statistical characteristic of rays.

In the second chapter of this work, light propagation in a turbulent
medium is lnvestigated in the approximation of geometrical optiecs. The first
section examines the problem on the diffusion of rays in random .rregular
media, in the second and the third seotions the amplitude-phase fluctuations

of a light wave are examined,




I, General Examination { a

1. Initial stochactic equations and some of their oonsequences | \

The propagation of monochromatic light in a medium with large-scale
irregularities, when depolarization is small [26], can be quite accurately
desoribed by the scalar wave equation

AY -+ B[1 4 3(P)] b w 0. (1)

Here # s linked with a component of the electric field E by the ratio
: v' w? T "'__..(.‘_)
T oxpl—dol), B DCE), e

of the dielectric constant, If one disregards large angle scatter, then

== Which is the fluctuating part

instead of (1), one can use the parabolic equation for function u linked }
with ¢ by the ratio ¢ = u exp(ikx):

20k 2% A4 Koo, p)ule, ) = 0,
- [\ & A _9_'__ _!_ _?_’_ (2>
e =¥ =, L G T G

During the transition from (1) to (2), the tern d2u/dx? is rejected, The .

initial condition for (2) is
#(0, p) = u,p). (3 s
Further, we shall proceed from (2).

Equation (2) with the boundary condition (3) can be written in the form
of an integral.differential equation

u(¥, p) == uy(p) exp [i g—jds:(&, p)] + ;

(4)
'y B[~
+27‘;.°r 56‘.\’9[!—'5 J‘d‘qz(v,’,-p)].\.lu(z‘ o)
which, in several ocases, 1ls morse suii‘;able.
If one writes the solution of equation (4) in the form of an interative ¢

serles, one can easily be persuaded that function u(x,p) will only depend

functlionally in the previous values along x of IQ ,P) from the interval
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0&é € xo It follows that u(x, p) does rot change when varying the func.

Cim? e T

{ion t({,p) outside of this interval, that is, in sections é(O. f) X
Consequently, the variation derivative du/J¥ satisfies the condition i

2une) o @w<o 8>
Ss(x', P') (5)
which we shall call the causality condition, Furthermore, a more suitable :
Bu(x. ?) i
valus for us is o:(x P--) where x = x', This value can be found from ' {

equation (2), if it is integrated in respect to X within limits (0, x),

3
and afterwards functioned by the operator -T—=—!

?u(x ¢’)
opp 2Lk, ). uu(x, ?) ‘Hd‘[* T (" o .u(E p_)
o-(\. ¢) m(x ¢)

+ B~ gl §)

Here we caloulated that é—'—‘-&-—?)— i §(8 - X') d(p —- p’); and the lower limit
Seln's )

. 'i
for integrating O was replaced by x', since according to (5) ~-f-.5‘—(5?-~"’ ) = () %
de(', )y
when x>t . Assuming that x' = x, we obtain the ratio (10) ;
j
...i.“.('_t'—g) = i:—- ;“(P .. P’)”(x‘ P)' (6) !
r‘os(x, P') © .
8 u(x. p) e '
In most cases, the value -:-"—-- when U< x’- x can be expressed by the
se(a, )

function of the Green equation (2), linking u(x,p0) and u(x',0') when

0L xt & x1 ) '
u(x, p) = | dg'Glx, pi &', (¥’ 9'),

by using the ratio [1] "
-':__fl(ﬁl_g)_ i t,_‘;. G(x. ' xll P')”(x" F')'
'\)E(x’, P[) -~

The solution of equation (2) with the initial condition (3) can, by using the

methods suggested by Fradkin [27, ?.8]. be written in operational form or in

the form of a Feiaman continual integral:




u(x, p) = cxp

\c\p[ S‘ ( P+S‘d"=(") .l}
o x ! - X N
= S‘Dv exp{i‘-)-- S‘di I_v‘ (3) + :(E. p+jd'r,ﬂ(1‘))

0

7

}uu (p+§ div(E)),
faron])”

In the first of the equalities, (7) after carrying out the function of the

where

IOl&

Dy = | do(&)” S 11 rm(s)exp[
&-0 £ 0

operator in the exponent for the brace which follows it, one must place
€= 0, A clear presentation of the solution in form (7), in several cases

is suitable for investigation (see [12'] and \'361 )

2, Approximation for delta-correlated fluctuations of a dielectric
conatant along the propagation direction

As was said above, field u(x, p) orly functionally depends on pree
ceding values of ‘i({, p'). However, there can be a statistical llnk between
u(x.p) and subsequent values € (x', ,o'). since values ;(x',/? ') when
x! >x are correlated with values of E({,p) when f,< X« It is obvious
that the correlation of field u(x,p) with the subsequent values of E(x',ﬁ')
is marked when x' . x& 1, where 1y == is the longitudinal ridius of
correlation of €. At the same time, the characteristic radius of correlation
of field u(x.,ﬂ) in a longitudinal direction has a value in the order of
x. (see for example (1. Therefore, in the problem examined, there is a
small parameter of lu/x, which can be used for an approximate solution, One
can place 1|= 0 in the first approximation, 1In this case, values of fields

u(& i ,01) when é) 1 < x will be not only functionally but also statistically
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independent of values of ¥(ny, #4) when 1 4> %, that is

<uu(s,. Py, ,,)'/\ = I uts m}( 1;[= (o 0>

i (8)

(E‘ < X, .’u > x)-
By using the feature of (8), one can easily find equations for the statis.

tical moments of field u(x, p)e Lot us indicate this on an example <wde
Let us usze equation (4) for this, By averaging it, we itake into acoount that
in the second term in the right part the value €(n), /) in the exponent is
always taken when values of q>g , that is, statistically independent of
the second factor A,u(} pj . Therefore, when averaging (4), these factors
can be averaged indspendently:

<, 8 = ey exp [t L j drie, ,,)J> +

p - (9)
+§£}-‘6§vd5<cxp{l-g- j‘d ne(n, p)]>.‘.\.4 Cult,p).
The equation oblained is closed, since it does not contain other known func=

tions, apart from ¢ u ), In a similar manner, one can obtain an equation

for the moment of the arbitrary orders
Mu,m (%) Bry ooy Bad Bl o B) == S0y 1), ooy 10y ) X
XX, P e WU(X, )
For this, one must first of all write the differential equation for u(x,#4),

cory u(x, D'n) and then convert it into an integraladifferential oquation
of type (4), Aftepr this, by using (8), one can carry out averaging. An
equation for Mp p obtained in this way in [11], has the form

Ma, nly L), L01)) =0 Al wl(ed) 1og))

<exp{l§— s.di
T

v &
{ s k("
g (e o
[} B

" ""1 N
L“(E’ 94)"'_\,dt(.-,. P')H NN
I

i}

(10)

n

3~ 1+~ Ly
L‘\"u P[)""“\u.(no P',J}/\) ’
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V(N =58, ) Maas, (8], (6D, (10)
fm) k~l

where {p i} is the aggregate of all ﬂi' and the value of
M, mllpil (1)) = @) oors HolRa)HURI). +ovy U por)-

0
is designated by M n,m*

3, Equations for moment of a wave field in & medium with a GCauss
distribution of fluctuations of the dielectric constant,

o When deriving equations (10), only the characteristics of the delta= '
correlation of fluctuations of the dielectiric constant along the direction i
of wave propagation were used; the distribution law itself was not defined
coneretely. Let us now sxamine a particular case of the Gauss law of dis-
tribution for €. In this case, the statistical characteristics of ¥ are
completely described by the correlation function

BAx, g3 &'y #) - {3l p)els ). l
The delta-correlation condition is equivalent to substituting B, by en !
!

effective correlation'

B3 L (e, o1 x) p) - Al —R)AW, b 8, (11)

)
. b

here A is determined from the equality of integrals from E; and B:H in \
raspect to x';

®
Alxy g, ¢') = \ dy’ Br(x, p; &', ¢'):
ey

In a case of statistical uniformity of the field X, which we shall examine )

1
for simpliocity, A = A('o- p'), that is A doe= not depend on x. In the ;

case examined, one can easily find the value

v i n )
1] . .‘~ ,
| Cilt; j da} Vi e it 8) H>
? T i) /o .
!
{
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and after calculating it reduce equation (10) to a differentiasl equation [11] ?

0 l 2 ¢ ,'

o= M o (Bt By = ) e A Mo~

& . (12) ‘é

— == QP v+0y P,,.)Mn.m. A *

. noa rom , :

where Qnom ™ :] _\J A(Pl == Pj)“" 2 L .-\.J "‘(Pl P*) i !

[ A {ma) -a

moom , |

’i‘E EA(P;_PI,- (13) :

Anl il :

. o ‘ In the case examined of Gauss delta-correlation fluctuations, the l

? ' aggregate of equations (12) and also their interconnecting equation for the ‘

{150 . i

e characteristic functional of a fisld u can be obtained by another method ’

[10) , which we shall illustrate on an equation for <ud, By averaging (2), :

b . !

we obtain s %

e DY woeee e A ) , Ty ,

4 ( Mo 0 ) QUlE 00 4 Kol guts, o) = 0. (14) |

‘ To find the last term, we use the formula obtained by Furutsu [29) and }

, Novikov [}(ﬂ J'

Ce(PIRIE]) = [dr Ce(r)a(r): (2RI <) s, (15)

!
: allowing us to calculate the oorrelation of the Gauss random function & (r)
3 (C¥> = 0) with the functional R[E) from it. Formula (15) can be proved,

1 for example, by expanding R [#] into a functional Taylor series,

Sinoe the solution of u(x,0) of equation (2) is a functional of g,

one can write - - ‘
Cofx, p)e(x’, P')> = Bi(x, oy X', ),

- X
Celx, plu (x, p)> = dix' S d ?' Bu(x7 o Xy Pl) T
o (16)
,~.' / .f‘;.’f(f:__?) \,
Na (_\.1' P)/
By substituting instead of By(x, 4 x',p') the effective correlation func-

. tion (11), we obtain

10
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{2, plutx, P> u%jd BAGp ~ p') ¢ LHE B .
2 e (s, H/ ‘

where, by integratlion with respect to x, the parity of the d «function is
taken into account, as a result of which the 1/2 factor appears, By sub
stituting the averaged ratio (6), we obtain

e o) ugx, p)s = z»} AO) Culx, )Y

and equation (14) takes on the form

’ 17}
(2:&5;+AL)<u(v p)w A(0) < ulx, p)y = 0, (17)

Equation (17) coincides with equation for M1 o Obtained from (12),
. ]
A complete statistical description of field wu(x, /) can be obtained
from the characteristic functional g

W far, o) we L exp [ § delu, gyede) -+ wt(x p) e e D

By differentiating Wx with respect to x, by using equation (2) and ratio }
(6), an equation for W , ocan also be obtained. It has the form (10}
b ow, o A AL i
N AR fol A .....-.~... — A e
.s;f s Qk.f ok l AP PT I vy
g A A ‘ (18)
-——de dy Ale - ¢ MEAE) T,
. where . ;
i‘ 1, ’ e b ( E.
Mip) = v(p) 5 ‘.m e)“ 0 ",1 1
b Equation (18), as can easily be shown [10, 15] is equivalent to the b

a aggregate of equations (12). Equatiorn (18) is the infinite dimensional analog i
of the Einstein.Fokker equation, and in this respect the described approxia
mation of wave propagation in a mediwn with Jauss delta-correlation fluctuations

b of ¥ can be called diffused,

Let us write in clear form the equation for the function Gy, R, 5)

w ‘ ' > '
< "(‘ R " )"'(‘ x, R - S and for function 3 (¢ o 4. 4 4)

Suly, g ulx, g, o puiv, g, , resulting from (12), when n=m =1 and

11




' f:zf - N0 1
A '}
” ‘ :
,_,. !
. g" ; n=mn=2: %
i
. 06, I & :
; S o G, = DGy Dip) A — Alp),
4 or K aR7 G, a (r)_c. {p) () (2 i
3 (19) ‘
e | GulO. R 3) = n - 1 V. IR 1y {
.".’ .',, (0, R, l’) 2 Uy s "2'— ?)“o( T '}2 P)’ i
v s""' . - . !
- 3 i o ] ] ¥ I' ] v
e ;3-‘"’— = o180t Ay = 8 = ) (— S [Dlg, — p)) + Dip. — #) + ‘.
. o 1 (20) !
B + Dlpy — #)) + Doy — #y) — Dip: — #1) = ey — 316Gy, ,
4 Gu(0, 1, b 1, P2 = Uolp) H(Ea) ey} 103ey). | :
4 ‘ L
S Equaticn (19) was obtained by Dolin [€] , and Beran [31]. Equation (20) L g
<y 1 %
. was first obtained by Shishov [7]. Equation (12) for moments of arbitrary ’
A ! >
’ order, apart from works mentioned above, was also obtained by another method ' aﬁ
: 4
. in a work by Chernov (8]. 4
L2 .'?(
g As Dolin noted (6], equation (19) is equivalent to the so=called narrow k
. arzle approximation of a radiation transfer equation, In faect, by substi- 1
: i
tuting (19) Golx, R, 5) - s'dv..l(x, R, #)exp(i #p), !
L
one can obtain an equation for function for J ;
ud % e dw fir - ) R, %), ; k!
G e (21) o
where - .Fg;"“.'.’l : gdxf(v-) ~-= 18 ths coefficient of extinction, :

“ .

7

f(x) - % (%) wa is the suvattering indicatrix, T(x.7.%*! .. is the
threoadimensional spectral density of the rorrelation function B¢(r).

Equation (19) for G, oan be solved in a general case for the arbitrary
function D( ,) and arbitrary initial conditions. As for an equation for Gy,
it cannot be solved analytically and one must resort to numerical methods.

Apart {rom equations for the mean values for the product of flelds u(x,/)1),

eva, UT(x, {ﬂ'm). where all the arbitrary x are identical. Equatlons can alsc

be obtained for functions (u(x,, A1)y eees u*(x'm,lo'm)> for non-concurrent




values of x [ﬂ&]. The boundary conditions for these equations will contain
functions of Mn,m for conourrent values of arbitrary arguments.

Let us also note that presenting the solution in an operational form or
in the form of a continual integral (7) when using suppositions on the Gauss
distribu'ﬁion of ¥ and the delta.covrelatioy along an arbitrary coordinate
makas it possible to caleulate < u(x,p)> and Gz(x,R,/a). In these cases,
it 48 also possible to solve equation (12), In cases when the solution of
equations (12) is not possible, formulation (7) also makes it impossible to
find a clear expression for Mn,m' or however, it is suitable for inylasti-

. gating the asymptotic behavior of moments [16].
4,. A method of successive approximations and a condition for the
applicabllity of a diffused approximation
, Let us nnw oxamine a more general method for obtaining equations for
moments, a par.ticular case of which i1s the approximation of a diffused random
process, Let us illustrate this method by an example of an equation for an
average field,

We shall reckon that the fluctuations of & have a Gauss distribution,

btut the correlation function B, (x,/y, x'.p') is not changed to B:f‘ .
Let us average 2juatlion (2)‘ and to find & € u> we use tha Fuiutsu-lovikov
formula (15)., As a result, we obtain the expression (16), the substitution of

which into the equation for <u) gives

(2lk:-' 1A, ) L+ R f«'/.t’ 5' dy'B.s, g ¥ p)
N ReAN )

oo hu(x, p) ot 0
T e /), A X
. ;‘et",/. P’) K

o
Equation (22) is not closed, since it contains a new unknown function \-;\

YR

To obtain an equation for this function, we shall aet on equation (2) by the
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operator B:(x ;; when x'«& x and we thall ayerage. .For finding

<

L4
AT L s

value of 7t «ix, ﬂaﬂ(\. 2] \ we again use formula (15). As ° result, we
> ot(x #)
obtain

"‘ 0 a? a’ (x. P) ” [/ "
l.zléa?.*-ép )< ‘('x ”>+k‘6§dt j dp" Bix, ¢ ¥, ¢") X

(23)

oo ‘ 1

- | ‘ ’\,( &ax.p) > .0,

' ‘ . ‘8t(x B Valy, ") :

Fquntion (23) is agun closed, since it ocontains a second variational deris

‘ ‘ vativo from . .nv oohtinuing this process, one can obtain an 1nnn1tlly

PR Y.

8 linksd chain of equations. A closed equation in approximation of a diffused
' random process 1s obtained when converting in squetion (22) funotion
B to B°ff = d(x x!) A(g - p!), since, in this cage, therd ia a valne

,ll‘:: : R Khulx, p)f P.c(x, PN  for concurrent values x = x', which acoording to (6)

| {
. is expressed through <uD. Converting B, to 13°ff can be done not in 91'

the first equation of the chain (22), but in on? of the suhsequent equations,

X . : /Ry, p) ,
For example, if this is done in (22), value < :‘“""":—“‘1> will appear
a2 ‘ e (x, p"istx’, ')’ :

| under the symbol of the integral. It can be obtained from equation (6) (in

which 4! is converted to 0"), if one acts with tue operator on this equality g

3 A and average

“ ae(x’, p') /_ Bulx, p) \ . ; " ‘“(\ g) Y PN ]
“; \ ” / "(P )\ / ‘
A ‘(x P )ﬁL(x P ) \?L(x P ) (2“) i

By substituting this expression into (23), we obtain a closed equation for (
<::(:,(‘x, :))> Aftor this, the system of aquations (22), (23) can be solved, %
and we shall find a second approximation for <ud,
A second approximation is much more accurate than an approximation of
g a diffused random process, It is quite difficult to show it in general form,

but this question can be investigated in an example permitting an accurate

solution. As an example, let us examine equation
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WRT + BUu) = 0 (w(0) = uy),

which differs from (2) by the lack of term {;u. If one introduces Bix, *")
== ol exp(—|& —x'|/l), | then
W) e tig expl-- e | p=)),
where « e y/l, pu: 5431!03, [ == is the rad&uﬂ of correlation &,
The solution of the first and ‘second approximations respectively have

the form ' (%) = ugexpl= ps),

UAL) - -i—'-'-'!u [exple=pe) - pexp(—<)].

By comparing 711. T, and © when 43 1, one can easily determine that the
approximated solutions can only have a good approximation when /«é 1. Apart
from this, funstion Ty, a8 opposed to U,, at sero has the same foru as an
accurate solution, Figure 1 shows functions of Uy sz snd U when M= G2
(@00 . T/uy,000 « T, /u,, % % %= Ty/uy)e In this case, the difference in

the second approximation from an accurate solution does not exceed 2,59,

16
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Equations of a second approximation can be solved for {ud» and Gz.
A comparison ¢f the first and second approximations makes it possible to find
oonditions for the applicability of approximation of a diffused random process,
Here, it appears that the conditions for the applicabllity for <u> have the

form
Tl'f\ 10 ".\:“" lo k,.\}’ ln
(25)

whers | = f' A()) == i3 the ocoefficient of extinction, 1 e is the radiua
of correlation of a field ¥, At the same time, conditions for the applica.
bility of a first approximation for Gz(x.R. ,ﬁ) have the form

poa X MleaAE LT (D p) k), (26)
wharg D‘W (%, p) we 13 the stmictural function of a eomple:; phase, calculated
by the continuous perturbation methed [1].

It must be stressed that conditions (25) and (26) are practically ine
dependent, since they apply limitations to various parametsrs, In partiocular,
it can be shown that conditions (20) are fulfilled wnen wondition */ 1 < 1 s
violated, Let us state that condition (26) sats limitations only on the
local characteristics of fluctuations of & and therefore can also be written
for a turbulent medium,

Conditions for the applicability of a paralolic equation (2) ars lavese
tigatod in work [12], where comparison of squations solutions (1) and (2),
writtenr in operational form (7), were done, Here, it appesred that conditions
for the applicability of a parabolic equation were done throughout the whole
range of appllicabllity of a diffused apr)roximation,

5. Solution of an equation for the function of the mutual coherence

and soma experimental data

Equation (17) for the average field can be easily solved. Its solution
has the form
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{ulx, p) ) = iy, P)cxp(— -g— x),

' whers uo(x. p ) == is the solution where thers are ro fluctuations,; . ? AU) =
is the cosfficient of extinction.

In a general case, one can also solve an oqu;tibn for functlion 02.
This solution was obtained bty Bremmer [32] and Dolin [33) when investigating P

the equation for the transfer of radiation in narrow angular approximations i

- : (21), equivalent to equatlion (19), before an eguation was obtained for 0, ',.‘;3

b ' Later, a similar solution was investigated in works 113, '31&1 « Whereas in b

(19) one carries out Fourier conversion on variable R, which is not included |

in osofficionts of the equation, we obtained a linear differential equation i

in partial derivatives of the first order, which can Ls eteuily solved Ly

the characteristic method. The solution has the following form A
Gy(x, Ry p) = IS%;SdR‘dp' G, R~ R, v —p') X ]

» .
TR R — o Y (27)
l;: v, La‘hp [‘u.- :tn--~- Z:' 6? ‘I ’1‘)(? P xt\ \l o

a where 02(0. R, lI) we is the initial value of the coherency funotion when Y
4 x = 0, Formula (27) can also be used for partially coherent sources @ﬂ_ '
; when 02(0, a.,o) do not have the form

LoV 1
“0 (‘R "{' "2" P)“ﬂ (‘R — -§~ ?),

For a partial case of a plane incident wave when -'32(0. R.(p) = const =
|u0| 2 , the integral along R' in (27) 4s calculated and produces d (kp'/x),

after which the formula takes on the simple form oft

Galx, R-p) < |u Pexp

kW
PR D( “) \‘
| (27a)

If one examines the fluctuations of a dielectric constant, caused by turbulert
fluctuations of temperature, in the considerable interval of wave numbers the ‘

thres-dimensional spsctral density &, (k) has the form )
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I (r) = .'\C:" it (£ 7o < Many

wvhere A = 0,033 «e is the numerical oconstant, cﬁ == 18 the structural

characteristic of fluctwations of a disleotric constant, depending on meteoro.

logioal oonditions (1), 1In this ocase, function D(4) is calculated and

equals

D(p) = 2n [ dw ()| | — explinp)] = NCIeo",

vhere N = %ar? A0(7/6)/5 + 22/30(11/6) = 1,46, By substituting this expres
sion into (27), one can caloulate both as a function Gz(x. O R), and as

‘ average intensity of a wvave {I(x, R)> = 05(x, R, 0).

T NPT L. . R 3O L |

t;v\i;“} ' \
I \

Figure 2, The space spectrum of the ocoherency function of the seocond
order. Points - experimental data according to [36] the
oontimuous curve was plotted on the basis of formula (27)
, with respect to the effect of the internal scale of turbulence,
| described by parameter y(um [36]).

Figure 2 shows the space spesctirum of the coherency function obtained in
work (36]. On the same graph is the theoretical dependence, plotted on the

basis of (27), In work [37] the behavior of space-limited beams in the




atmosphere was experimentally studied. In Figure 3, the results of measure-
ment of average intensity are oompared with a curve, plotted on the basis of

formula (27).
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As for the equation for Gu_. it was not possible to solve it analytically,
An approximated solution of ejuation (20) (with respect to single scattering
in the sense of the theory of radiation transfer) is shown in [13, 15) for
turbulent fluctuations of & dieleoiric constant. In work by Dagkesamanskaya
and Shishov [36] there are results of a numerical solution of this equation
for the correlation function of a dielectric constant in the form of a Gauss
ourve, In this work they obtained saturation of intensity flustuation, which
agreed qualitively with results described in [2 - 5].

Let us state that functlon G, also describes fluctuations of the shift
of space-limited beams in random irregular media [13, 39] .

6. Amrlitude-phase fluctuations of a light wave

Let us now examine the statistical deseription of amplitudemphase {luca

tuations of a light wave,
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By introducing a complex phase of wave ¢ =L = 15, where L =1n A/Ao -
is the amplitude level, and S «= are the fluctuations of the phase of a wave
relative to the phase of an incident wave (x, k), one can write the equation

for the ocontinuous perturbation method:

d3 \ ~
20k 5§+ AJ.'(: AT Km0, e exple) (28)

Acourate solutions of equations (2) and (28) are equivalent, In the firat
approximation of the ocontinuous perturbation method in equation (28), the
term (V¢  1is omitted, that is,the equation examined is

2k d(%‘. 4 S 160+ BVElx, p) em ), (29)

In this case, the solution is a Gauss random {leld and the atatlistical proe
perties of amplitude functions are desoribed by the parameter o =¢yix,p)y [1),
Here, the validity ocondition of the first approximation of the continucue pere
turbation method for amplitude function is the ocondltion azo< 1+ In the
range 020 S 1 (which is called the range of strong fluctuations) one must
study the full equation (28).

Let us state that the diffused approximation for equation (2) du.es not
impose limitations on the amplitude fluctuations and, consequently, equations
for moments of field u(x.p) (12) are also valid in the range of strong fluce
tuations of amplitude,

Statistical properties ol the solution (28) can also be described in
diffused approximation. However, on the strenyth of the nonlinearity of the
equation (28), squations for moments of funotion cp(x, p) are incomplete,

By separating the imaginary part in (28), we obtain equations for the
level of amplitude X (x.p) and wave intensity I = exp(zx):

(§ .
2% :-'i + A8+ 29,75, S = 0 (30)

20




al .
"5;+V;('VL-’3) w0, (31)

Experimental study of the distribution of probabilities for amplitude
level [2] showed that this distribution, both in the weak range and in the
vange of strong fluctuations ia close to a normal distribution, although
"tails" of this distribution, at the present time, have been poorly studied
and they also determine the distribution of probtabilities for wave intensity.
As for fluctuations of the angle of arrival of a wave at the observation
point, linked with fluctuations of A"/ S, they are well described by the
first approximation of the continuocus perturbation method L4,

Yor a plane incident wave, houndary conditions for (30), (31) are oonw
ditions (0, g) O, J(0), P')}r'-ll and the solution of these equations will be
similar to random fields in plane x = const,

By averaging equation (31), we obtain the ratio

Clixy 9)d o 1, (32)
expressing the law of oonservation of energy for the examined problem,

By multiplying (31) by < and averaging, we obtain, by allowing for (32)

and apace homogeneity, the ratio .
Culx pMix, 2) > - i}’; Y i<y, 16, plv, S, o). (33)
Values in the left part (132), (33): are deterulned by the single.point
distribution of probabilities for field 'x.(x,,o), and the value in the right
part of (33) is linked with the ocorrelation of value V.1 and < S,
If the single.point distribution of probabilities for A is of the Causs

type, then according to (32) it will be the expressicn

Clep)d vv o oty ()

where °2 == 18 the dispersion of the amplitude level, in this case ¢,/).: s

2




If, when culoulating the ahplitudc fluctuations, the supposition on the
poasibility for using the expression from the firat approximation of the ocone

" tinuous perturbation method for V| S is valid, the right part of (33) can

be caloulated in a diffused approximation [41] , and we obtain

A~iney (33 1), (35)

In this way, the result of the combined use of suppositions on the
normality of a single-point distribution of probebilities for amplitude level
and the possibility of substituting V‘_ S into the expression from the
first approximation of the continuous perturbation method is expression (35),
which, however, does not colnoclde with oxperimental data relative to the
behavior of e‘,i depending on 6'20 2 - 5. Fuller information on the ampli-
tude=phase fluctuations of a plane light wave can be obtained, whioh is limited
by the validity of approximation of geometrical optics,

1I. Approximation of the Jeomeirical Optica

1. DAffusion of Beams in a Medium with Random Irregularities

From the strictly formal point of view, the following is reduced to the
Elnstein«Fokker equation. Let, k.. (5(s), .., L)) satisfy the system of dya

namic equations

d 48) e l"(a. y) +f((fo ),
s (36)

where vi(ﬁ. 8) == are the determinate funotions, and fi<§' 8) == are the
random functions (n + 1) of the variant having properties
a) fi(f.. 8) == a fNauss random field in (n + 1) <dimensional space (g, s),
b) </ifd 9)) = 0,
o) i VAL E) = 2ism T, ) o
In this case, the probability density for solvingz systam (36), that is,

function Px) == (A3 (s) ~- %))
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(here é(n) w= 18 solution of (36), corresponding to the specific realization
of f(é. 8), and averaging is done on the population of all realizations of

f) satisfies the Einstein.Fokker oquatiom

oP, (.\‘) £, ____([“(x’ §) -+ A, 1P, (%)) =

(38)

dx d IFM(x! ) Q)P (X)] “00

Here, the rotation was 1nt.roduood

X e

and summation is done on the recurrent indices.

These facts are well known (see, for example, (42, 43]). For practical
use, a suitable deduction for equation (38), based on the uss of the Furutsue
Novikov formula (15), 4s shown in work [24] . In the same work there is a
method for finding corrections to equation (38), allowing for a finiteness
of a radius of correlation of field f along the 8 axis, whivh, by the
same token, allows one to determine limits for the applicability of the equa=
tion (38) for actual physical syatems,

Let us turn to equations of beams, UNormally, beam length 1 1is used
as an independent variable s, By acoepting 1 as the independent variable,

we shall write aquations for beams in a form

dr, (1) dsl) 0 L(r) (39)
el e (3 - !
ol 40, dl G == = ar, '
where M ln n, n == is the refractive index, If one introduces 6-vectors
, . o
Ew |r2], en (v, 0], f=|0, a], where 1= (5 —737, ‘—(;;ﬂ-. , the system of
‘A

equations (39) can be written in form (36). Conditions (37a, b) can be
acoepted without reservations, However, as for the transfer to approximations
of the correlation function for f by using the d-function, we meet insur-
mountable ditficulties, The fact is that ¢;=a/r %) . "«(§) and does not

depend on s = 1, Formally, one can reckon that the function #1455, s
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Z
k : (in this case, not depending on s, a') has according to variable s . s' an |
infinite interval of correlation for with as large an increase as possible in i
the value of s ~ s', but with &, l)' fixed, this funetion does not diminish, |
In this way, it is not possible to write the EEF ocorresponding to the dynamic
system (39)., However, one can show equations of beams, by taking the indepen.
dent variable to ocoordinate x, If one locks for the equation of a beam in
form R, = Ry(x), where R, -{y, z} == 13 the transverse shift, instead of (3?).

we shall have a dynamic system .
R VR X) ;.

d - —-—‘-S'T..—— -g'.. L ‘—{-‘{‘( o ——o ‘

de"(x) Yz wer TR S VG (40) ,,

Where y .. (s, %), @, |0, a,), o However, we notice that in this form the j
I |

equation of beams can be used only until the firat point of turn, where the
denominator | 1-=*.. is reduced to zero, It follows that in a statistiocal ;
problem (40) can only be used in a range where the probability of negative T,

1s small, that is, in the range of narrow angular deviations of beam. Since

in this range | 1T-— % =i, , instead of (40) we obtain an approximate system

of equations for beams in narrow.angle approximations:

/ "oy
o ‘!’L('\.) V'Lgl.(n..[ VX ('4»1)

: ..-d— e . -
- de R.L(x) = vJ_(-\’), dv

For system (41) s = x is already included in the number of arguments f,
and therefors, here one can transfer to the EEF, The corresponding EEF,

3 acoording to (38) has the form

aP, or g2,

. IS P A D “

ox L OR 9% (42)
where D .- is the coeftlcient of diffusion, which ocours when calculating

Fkl and in a model of statistically uniform and isotropic fluctuations ofﬂ t

D- =t \' o wetr(e), (43)
]
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R Hdere, P(K) == is the three-dimensionsl spectral density of the correlation ;
function 4. Expression (43) for D coincides with those shown in works {18 - .;
21]. Equation (42) is easily solved, and its solution, corresponding to the
K- ¢ ' ?'
u initial oondition PRy %) - S(Ry)xL), has the form of a Gauss distria }
bution with moments (R, (x)R, i(x)} e :-;')_ D2, '
a CRLIR) (%))~ Dbyt (44)
' \ <‘.I.l(x)t.u *(x)> w28 ‘
These expressions are well known. On the basis of system (41) it is also
easy to obtain the longitudinal correlation function of beams displacement ' ‘
f241 : y
- SRR L (1 A 5)(1 Ly g AT : {
VRE SRS 2 | K (45)
Let us now exanine the problem of simultaneous diffusion of two beams, In '7
‘ this case we have the following dynamic system of elghth order: ;
R o da el v
] Wx R Y (46)
L = 1, 2 wa number of beams, The corresponding EEF for the systam (46),
y according to (38), has the form
g | /] ar ar,
. EPRy Ruwy 5oy %08 0 %oy b w0 s (
9 ox Rarn R o ) Yor . [ AR, (47)
1 g P ot ]
, e /) R g0 L R RODP k:
) , (1!’."’” ! =Y ;») i i, Wk R, K
‘ where !
| T L N
] 9 ge oy o e e hmee p
‘ Afp) = 2n [ dudeespiixg), g Ry R
: In equation (47) one can introduce new variables p, .g. ,..p,, R . .-‘.’.(R,., LR,
Pe=myp vy % -3(1 115 e After transfarring to new variables, it is
possible to carry out integration on R and € and obtain an equatlon for
the funetion: A .
Pip ) = (MR- R )il 7 0 1)),
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£ ' desoribing the relative diffusion of two beams,

3 » : atpP ,
e 4y Popp)- e (48)
3 ax g ol

3 Here

Diglp) = 2D Tas = Wog(g)] = 2  diet, ) {1 = cos . (49)
vi' If 1y - is the radius of correlatlon of gradients of the refractive

index, when ¢/, D.(p) = 203, This ratio shows that then there are large
% initial diatancss between beams, in comparison with 10. their relative
diffusion ccours with a tw.fold diffusion coefficient, which corresponds
to the indepenclent diffusiocn of each beam. The Joint distribution of pro=-
- babilities in this case can be reckoned as Gauss.
In a general czse it was not possible to solve equation (48). It is
only obvious that when there is a variable diffusion coelficient (L9) the
,%i 2 solution is rot a Gauss distribution. This can indicate {24] that the mean

i : square of the distance between beams increases propvortionally to the cube of |
‘;1 the distance traveled, but the coeffielent in this formula is different in
‘ small and reciprocal :listances, These two ranges are separated from each
other by a small sange of exponential increase, the beginning of which coine
cldes with the beginning of the range of strong fluctuations of wave intensity.
lLet us examire the limits for the applicability of a diffused approxima-
tion for beams shown above, A= was already caid, the EEF for diffusion ol
beams could only be substantizted in narrow-angle approximation. Henre, according

to (44) the condition arises

PV

L > "1_ or li. ---/' i (1 /u)n (50)

where 075 == 35 the dispersion of fluctuations of the refractive indax, This

condition imposes a small limitation on the transverse displacenent of the
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beams { R*\x) ) - x*, An examination of corrections linked with the finiteness of i

the longitudinal radius of ocorrelation, does not lead to mew limitations,

SR e

Lel 18 state that in another extreme case (when the beam goes far off & " '
into a heterogeneous medium) thero is an isotropic distribution of protabilities
for the bear in space similar to the Boltzmarn c’xistri_bution in statistical - -
physics wd. -

e e e S o, bR

2. AMmplitudesvhase fluctuations of a light wave in random lhetemgeneous b
Media

Let us now examine the amplitude-phase fluctuations of a plane light '

Wive,

Ir. an approximation of the geometrical optics, the system of equations

. for the amolitnde ‘}evcl and wave phase takes on the form P
7. 1 ) R 1 - . N L
ax TR TSV A St el (0 p) )

[y

€S, 1, oy k- Y (51) x

Ly e IS ¢ Lo e Xy ,S (). nt 0 . .

bR epee) (S(0.ei e 0) -

The system of equations (51) was investigated in works [05 « 47, 2], i
Solution of an equation for 4 can be written in the form [4§ 1, o

" x i .
I' ] ¢ ! e
. . x 090 e d— E‘\. N E' . Ry ) M
7(x, p) ij diy. 8¢ R(x, & e, (52) : _,!
1 : )
where R(x') -~ R(x, x';p are the transverse displacements of beams, determining ’ 4
3 the beam tube, which satisfy the equation ]
g -+ b
ple ’, 1 ! [ » - '
2 R(x, x; p)=p— .-kﬁj diy S, Ris, % ). (53) I
f' Here, on the strength of the suppose& singularity of beams, !v
: R, 5 Rix b p)) == Rix, b ), (54) ]

The paths of beams arriving at the observation peint (x, P) are determined

. by the value ¥, 3 the equation for which, in 1ts turn, has the form '

1Ratios (52) = (S4) are also valid when there are diffracticn effects,
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'l')'VJ»"l'"l'(\".LSV:.)\'-Sﬁ“&'YLT(J: g (55)
Ox &k - 2 3
The solution of equation (55) can also he written in the form of an integral .
with respect to the same beam: T |
v.Ste, 9= 5 v S R 5 p) g

(56)
By substituting (56) into (53), one can discard the wave phase from axamina- i
tion, and we;ahall arrive at an equation for the path [25])

ERE 1~ | -
S0 Lo ke (57)
with 1imiting conditions |
.
i dR(¥) | |
e R x et ._........‘. . | - 0. . ¢
k- ( ) b lt'“-o . (58) " l

Here, the expression (52) for the amplitude level assumas the form
v K

7x, p)= - M g‘d K‘,l‘o{'l()(l e {n Rixovt ) X

b . am E £)| (59)
b | . P n o Ry, & p)‘
In this way, Loth the amplitude level and the phase gradient, determining

@_ i the angle of arrival of the wave at the observation peint for a specific
3 realization of field f(x.lo). is determinsd by the single "dynamic" equation
. (57) with limiting conditions (58), Beams, determined by equation (57), vary

o e — i et A =T i

i ‘ from beams in Sertion 1 since the limiting conditions for them are set in 2 4
if ] different space point:z (when x!' = 0 and x! = x), lence, the propagation } 4
b of beams described by aquation (57) with conditions (53), does not have ite .
nature of a diffused random process (even during the condition of & -correlation !
of Pield f(x,,ﬂ) along the x axis), and the probability density for these

3 beams i3 the arbiirary probability Jdensity lor a whole aggregate of beams in. -
3 vestigated in Section 1 of this chapter,

| Beams, determined by eguation (57) with conditions (58), describe fluce

] tuations of the beam tube, which determine fluctuations of wave intensity at [

-1i the observation point, In work (48] there is a calculation of fluutuations of




the sectional area of 2 beam tube when ons can usu & successive approximation
method for equation (57).

Let us note that, as was shown in work (7], both the solution itself
of the aquation for ¢, and all the statistical characteristics of it are
determined by solving the squation for the wave phasb S(x, p) & S[a).

7 The applicability of diffused approximation for desoribing ampli<

‘tudesphase wave fluctuations ’

An equation for the amplitude level can be written in the form

Cilogn®=0 w0 pen (60)
where | 1= eX0(2) = wix, ’?”m."‘? )il l’) =e 18 the wave intensity. ,°", the
strength of the apace mmbgeno;w of field ¥(r) random fields w(x.p), /(x,p).
$(xp) will be horogeneous' fields in plans x = coﬁsﬁ. By using equations
( 515, '(‘60)' oné ¢sm‘ obtain an expression for the single.point intensity corree
lation and wave phaser T S | .
o PALREE f iy 4 E:'li.' {jl(v,S)">i; (61)
on the other han&; the rutln takes place’

VG, p By e Ul ) (v, 873, (62)
where G(y. P ) = Catx, plucix, p)y == 18 the mutual coherency function
examinad in th'e tirst chapter, In an approximation of geomatrical opties,
the expression (42) is simplified and takes on the form

VivaG{4; Py Pz)i;:’mp" Clig, 8. (6%)
The left portion (67) oan be calzulated in an approximation of the diffured
random process, In this approalmation, function G for the plane wave 1is
described by formula (27 a), and ('g'(x, p)/(..v. p)d = 0. « Consequently, in
an approximation of geometrical opties and diffused approximation!,

1 Let us state that furmulae (64) aru ulsmo valid in the cass of non.Gauss

fluctuations of ¥,
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iy, S7> = Eaun(m < ey,
(64)

ISy =X a, oy,
16 |

where 7 -w':fd ' (x)x -7:-, C(v,S)') == is the dispersion of the angle of
arrival of a wave at the observation point in the first approximation of a
continuous psrturbation method (the partmotpr. characterlging the intensity
of phase fluctuations @6], So(*, p) -:%Sd &7(5, e).

The correlation ¢/S) m Elz?(‘“""““""’* y 18 deternined by the single-
point distribution of probabilities of field u(x, ,0) and penerally speaking,
is conditioned by all moments of u(x, 10)' The exprassion (64) for this
correlotion was calculated in a diffused approximation,

By !‘ollﬂing Section U of the first chapter, one can obtain conditions
for the applicability for tormulae (64), which, t¢ some degres, will charace
terize the condition of applicability of the diffused approximation for a
single.point dxat'ribution. of probabilities in an approximation of geometrical
optics. These conditions for a turbulent medium will have the form [25],

101, I (65)
where the value of k’m characterizes the internal seale of turbulence,
In this way, when carrying out conditions (65) caloulations for the am-

plitude~phase fluctuations in an approximation of the diffused randum process

in a gecmetrical-optics approximation are valid, Conditions (65) coincide with

coniditions (%), deseribing the applicability of a diffused approximation for
baams in a turbulent medium, which, as was shown in the previous section, also

detarmine all the statistiecal characteristics of a 1ight wave.

Let us try to analyze the results obtained from the point of view of their

applicabllity for the propagation of Light in a turbulent atmosphere,
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A parabolic equation (quasieoptical approximation) was suggested as a
basis for examination. This equation is only valid when one can disregard
back scattering. For light, scattered in turbulent flustuations of the
refraction index, angles 4~ /, in which the basic part of the scattering
field is included, have an order of 10" . 10"“. Since fluctuations of the
dielectric constant in the atmosphere are alsoc very smalli (%e~10-% |, one
oan almost always disregard back scattering of light in turbulent hetero.
goneities, This condition is only expected t0 be violated in the millimeter
wave band, and even in this case deviations are very small,

On the other hand, the small value of the scattering angle & causes a
strong interaction of scattered waves among themselves and with the inclident
wave, This effect, in spite of the small valuw of S£ also causes strong
fieid fluctuations, A3 a result, as was said above, ealculation methods,
based on one or another form of the perturbation method, are invalid, The
suggested theory uses the small value of another parameter -- the characteristic
longitudinal scale of heterogeneities compared with all other longitudinal
scales of the problem, Here, there is an analogy with the nonequilibrium
kinetic theory of gases, where the small value of the interaction time of
molecules (in our case, the longitudinal coordinate plays a time role) is used
for separation, As a regult, in spite of the fact that conditions for the
applicability of the theory occur and contain limitations on the 3izo of
fluctuations of &g, these limitations are so small that they are carried out
in an actual atmosphere even for relatively lung routes, Unfortunately, due
to the expansion of the applicability range, one must contend with a velatively
complicated theory and the complication of its results, that is, one must
have recourse to numerical methods of caleculation (for example, for function

04)' Apart from this, since the proposed theory operates with coherency




functions of different orders, complications ocour when phase fluctuations

must be calculated, However, the basic diffioculty with which one must oona=
tend in the continuous perturbation method == of not being able to describe |
a light field in the strong fluctuation range ~- is eliminated in the new ;
theory. Apparently, in all cases when the statistiocal characteristics of a ‘
light field in a turbulent atmosphere which interested us ocould bs expresssd
bty coherency functions, the suggested theory almost always gave us an acoept-
able result. !
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